Orjinal Araştırma Makalesi | Multidisipliner Yaklaşımlarla Coğrafya 2023, Cil. 1(4) 262-279
Sema Çıtak & Orhan Mete Kılıç
ss. 262 - 279 | DOI: https://doi.org/10.29329/mdag.2023.617.1 | Makale No: MANU-2311-09-0001.R1
Yayın tarihi: Aralık 13, 2023 | Okunma Sayısı: 67 | İndirilme Sayısı: 244
Özet
Morphometry, which has been an important field of study for geographical sciences in recent years, is defined as expressing landforms with mathematical expressions and numerical elevation models. By using morphometric parameters, many features of the river basin and river sub-basins, such as drainage characteristics, can be measured. Although the term was first used by Chorley in 1957, Horton laid the foundations in 1932 and demonstrated that mathematical calculations could be made with his study of the morphometric properties of stream networks and drainage composition, in other words, the relationship between streams. This study was planned to be carried out due to the fact that the Çekerek basin, which is the study area, is one of the important sub-basins of the Yeşilırmak stream, as well as the presence of important streams and streams, the basin is rich in biodiversity and has important agricultural lands. In this study, DEM (Digital Elevation Model) containing the Digital Elevation Model (DEM) data of the Aster satellite with a resolution of 30x30 meters was used, and all data of the basin boundaries and the study area were determined with the help of the ArcMAP 10.5 program. A stream network with a threshold value of 500 pixels was created by converting it to raster data on the ArcMAP program. In order to divide this stream network into directories according to the Strahler (1952) method, 6 indices were calculated by Stream Order and the data of the parameters to be applied were obtained. Determination of the drainage network of the Yukarı Çekerek Basin by revealing the fluvial factors occurring in the basin by applying morphometric parameters with the help of GIS, water flow direction, formal characteristics of the basin, flood and overflow creation capacity of the basin, sediment transport-production capacity and hydrographic calculations by calculating the morphometric parameters of the basin. It is aimed to have information about its features. Based on the values obtained as a result of the analysis of 14 parameters in line with the areal, linear and relief morphometric characteristics of the Çekerek basin; The length of the basin is greater than its width, the roughness value and the slope of the stream bed are high, the flow collection period is generally short, it is in its maturity phase, the geomorphological shapes have reached the equilibrium profile, the stream bed has begun to expand with the slowing down of deep erosion and the basin is in a tectonically stable state. In addition, it has been determined that the flood potential and flood peak probability of the basin are not high, but tend to increase. All these results show that making hydrological evaluations in basins as a result of analyzes made with morphometric parameters will contribute to new studies as a preliminary study in the planning of human activities, the creation of early warning systems and the creation of disaster management plans.
Anahtar Kelimeler: Jeomorfometri, Morfometrik Analiz, Coğrafi Bilgi Sistemleri(CBS), Yukarı Çekerek Havzası
Bu makaleye nasıl atıf yapılır? |
---|
APA 6th edition Harvard Chicago 16th edition |
Kaynakça |
---|
Ajay, P., Mahmood, K., Vijay, S., P, T. P., Joy, J., Nayan, P. (2014). Morphometric and land use analysis for watershed prioritization in Gujarat state, India. International Journal of Scientific & Engineering Research, 5(2), 1–7. Ajaykumar, B. N., Gopinath, G. (2018). Geospatıal Technıques For The Analysıs Of Hypsometrıc Parameters Of A Humıd Tropıcal Rıver Basın, South Western Ghats, Indıa. Carpathian Journal of Earth and Environmental Sciences, 13(2), 465–476. https://doi.org/10.26471/CJEES/2018/013/040 Aldharab, H., Ali, S. A., Ikbal, J., Ghareb, S. A. (2019). Analysis of Basin Geometry in Ataq Region , Part of Shabwah Yemen : Using Remote Sensing and Geographic Information System Techniques Original Article Analysis of Basin Geometry in Ataq Region , Part of Shabwah Yemen : Using Remote Sensing and Geographic . June. https://doi.org/10.5958/2320-3234.2019.00001.5 Altıparmak, S., Türkoğlu, N. (2018). Yakacık Çayı Havzasının (Hatay) Morfometrik Analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 58(1), 353. https://doi.org/10.33171/dtcfjournal.2018.58.1.18 Aytuk. (2017). Değirmendere Havzasi ’ nin (İskenderun / Hatay ) Flüvyal Jeomorfolojisi.Yüksek Lisans Tezi. Sosyal Bilimler Enstitüsü. Babu, K. J., Sreekumar, S., Aslam, A. (2016). Implication of drainage basin parameters of a tropical river basin of South India. Applied Water Science, 6(1), 67–75. https://doi.org/10.1007/s13201-014-0212-8 Beard, L. R. (1975). Generalized Evaluation of Flash-flood Potential: A Report by Leo R. Beard for National Weather Service, National Ocean and Atmospheric Administration, US Dept. of Commerce. Center for Research in Water Resources, University of Texas at Austin. Chandrashekar, H., Lokesh, K. V., Sameena, M., roopa, J., Ranganna, G. (2015). GIS –Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4(Icwrcoe), 1345–1353. https://doi.org/10.1016/j.aqpro.2015.02.175 Coşkun, M., Öztürk, A. (2022). Havza önceliklendirmesi bakımından Ermenek Çayı Havzası ve Gökçay Havzasının karşılaştırmalı morfometrik analizi. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 23(1), 1–10. https://doi.org/10.18182/tjf.1024569 Elbaşı, E., Özdemir, H. (2018). Morphometric Analysis of the Marmara Sea River Basins. Journal of Geography, 36, 63–84. https://doi.org/10.26650/jgeog418790 Erşahin, H. E., Kaba, C. (2012). Vadiler (Akarau, Flüvyal, tektonik) ve Jeolojik Önemi Hilmi. In Beytepe Ankara. Görgülü, E., Göl, C. (2021). Coğrafi bilgi sistemleri ile havza morfometrik analizi: Sarayköy Göleti Havzası (Çankırı) örneği. Anadolu Orman Araştırmaları Dergisi, 7(2), 107-118. Görür, A., Karadeniz, C. (2018). Morfometrik Parametrelerin Havza Hidrolojisi Bakımından Değerlendirilmesi. Turkish Journal of Forestry | Türkiye Ormancılık Dergisi, 19(4), 447–454. https://doi.org/10.18182/tjf.476776 Gravelius, H. (1914). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde Compendium of Hydrology I. Berlin, Germany Grimaldi, S., Petroselli, A., Tauro, F., Porfiri, M. (2012). Time of concentration: a paradox in modern hydrology. Hydrological Sciences Journal, 57(2), 217–228. https://doi.org/10.1080/02626667.2011.644244 Horton, R. (1932) Drainage Basin Characteristics. Transactions, American Geophysical Union, 13, 350-361. - References - Scientific Research Publishing. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1451619 Horton, R. (1945) Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geological Society of America Bulletin, 56, 275-370. - References - Scientific Research Publishing. https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=1451620 Hoşgören, M. Y. (2001). Hidrografyanın ana çizgileri: Yeraltı suları, Kaynaklar, Akarsular (Vol. 1). İstanbul Üniversitesi. Kabite, G., Gessesse, B. (2018). Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. https://doi.org/10.1016/j.iswcr.2018.02.003 Karataş, A. (2014). Karasu Çayı Havzasının Hi̇drografi̇k Planlaması. Keller, E. A., Pinter, N. (2002). Active Tectonics : Earthquakes, Uplift, and Landscape / Edition 2. Prentice Hall Inc., Upper Saddle River, 362. https://search.worldcat.org/title/803823604 Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362. Kutukcu, A., Kaya, S., Kabdasli, S., Gazioglu, C., ve, G., Bakanlığı, T., Ankara, K. (2015). Teknik Sempozyumu 21-23 Mayıs. http://globalweather.tamu.edu/ Malik, M. I., Bhat, M. S., Kuchay, N. a. (2011). Watershed based drianage morphometric analysis of Lidder catchment in Kashmir valley usin geographical information system. Recent Research in Science and Technology, 3(4), 118–126. Mayer, L. (1990). Introduction to quantitative geomorphology: an exercise manual. Introduction to Quantitative Geomorphology: An Exercise Manual. Melton, M. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology. https://apps.dtic.mil/sti/pdfs/AD0148373.pdf Nag, S. K. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(1–2), 69–76. https://doi.org/10.1007/BF03007341 Ödekler, B., Türkoğlu, N. (2020). Sabuncular Deresi Havzası’nın (Rize/Çayeli) Morfometrik Özelliklerinin Coğrafi Bilgi Sistemleri (CBS) İle Belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1), 14. https://doi.org/10.33171/dtcfjournal.2020.60.1.2 Özdemir, H. (2007). Havran Çayı Havzasının (Balıkesir) Cbs ve Uzaktan Algılama Yöntemleriyle Taşkın Ve Heyelan Risk Analizi. Özdemir, H. (2011). Havza morfometrisi ve taşkınlar. İstanbul Üniversitesi, Edebiyat Fakültesi, Coğrafya Bölümü, Fiziki Coğrafya Anabilim Dalı, March. Pareta, K., Pareta, U. (2011). Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India using ASTER (DEM) Data and GIS. International Journal of Geomatics and Geosciences, 2(1), 248–269. Patil, V.S., Mali S.P. (2013). Watershed Charachterization and Prioritization of Tulasi Subwatershed : a Geospatial Approach. International Journal of Innovative Research in Science, Engineering and Technology, 2(6), 2182–2189. www.ijirset.com Patton, P. (1988) Drainage Basin Morphometry and Floods. In Baker, V., Kochel, R. and Patton, P., Eds., Flood Geomorphology, Wiley, New York, 51-65. - References - Scientific Research Publishing. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=1451651 Pike, R. J., Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin, 82(4), 1079–1084. Rana, N., Singh, S., Sundriyal, Y. P., Rawat, G. S., Juyal, N. (2016). Interpreting the geomorphometric indices for neotectonic implications: An example of Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 125(4), 841–854. https://doi.org/10.1007/s12040-016-0696-8 Reddy, G. P. O., Maji, A. K., Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India-a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6, 1–16. https://doi.org/10.1016/j.jag.2004.06.003 Ritter, D.F., Kochel, R.C. and Miller, J.R. (2002). Process Geomorphology. McGraw Hill, Boston. - References - Scientific Research Publishing. https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?referenceid=1688357 Schumm, S.A. (1956). Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67, 597-646. - References - Scientific Research Publishing. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1768382 Sharma, S., Mahajan, A. K. (2020). GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India. Applied Water Science, 10(7). https://doi.org/10.1007/S13201-020-01243-X Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668. https://doi.org/10.2475/AJS.248.9.655 Strahler, A. (1952) Dynamic Basis of Geomorphology. Geological Society of America Bulletin, 63, 923-938. - References - Scientific Research Publishing. https://www.scirp.org/(S(i43dyn45te-exjx455qlt3d2q))/reference/referencespapers.aspx?referenceid=1749496 Strahler, A. (1964) Quantitative Geomorphology of Drainage Basins and Channel Networks. In Chow, V., Ed., Handbook of Applied Hydrology, McGraw Hill, New York, 439-476. - References - Scientific Research Publishing. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1451624 Tarboton, D. G., Bras, R. L., Rodriguez-Iturbe, I. (1992). A physical basis for drainage density. Geomorphology, 5(1–2), 59–76. https://doi.org/10.1016/0169-555X(92)90058-V Toprak, A. (2015). Solhan Deresi̇ Havzasinin (Bi̇ngöl) Sel ve Taşkın Anali̇zi̇. Fırat Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi, Elazığ. Turoğlu, H., Aykut, T. (2019). Ergene Nehri Havzası İçin Hidromorfometrik Analizlerle Taşkın Duyarlılık Değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi, 2(2), 1–15. https://dergipark.org.tr/tr/download/article-file/685038 Utlu, M., Özdemir, H. (2018). The Role of Basin Morphometric Features in Flood Output: A Case Study of the Biga River Basin. Journal of Geography, 36, 49–62. https://doi.org/10.26650/jgeog408101 Uzun, M. (2021). İnegöl Havzasında Drenaj Ağı Gelişimi ve Flüvyal Süreçlerin Morfometrik Analizlerle İncelenmesi. Ege Coğrafya Dergisi, 30(1), 85–106. https://doi.org/10.51800/ecd.906685 Verstappen, H. (1993). Applied Geomorphology Geomorphological Surveys for Environmental Development. Elsevier, New York. - References - Scientific Research Publishing. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=2029731 Zorer, H., Tonbul, S. (2019). Başkale Havzasi’nda havza gelişiminin jeomorfometrik analizlerle incelenmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 29(2), 19-38. |